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Abstract

This work addresses the differentiation of the inverse coupling matrix with respect to a coupling or damping loss factor.

It applies to two central questions in conjunction with statistical energy analysis (SEA). The first concerns optimization

problems for which a sensitivity factor is proposed, based on a simple Taylor series. The factor shows the sensitivity of the

vibrational energy flow to a certain coupling loss factor and hence the associated path.

The second question where the differentiated inverse coupling matrix applies is the investigation of the pro-

pagation of uncertainties in input quantities in a statistical energy analysis. This enables a variance calculation for primary

the energies of the subsystems. The approach can be used to establish a variation range for the results from an SEA

analysis.

Generic configurations with different transmission paths are investigated employing numerical implementations of the

approaches. Both procedures are applicable for systems of arbitrary size.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical energy analysis (SEA) is an efficient tool for the analysis of vibro-acoustic systems. SEA provides
good results under the conditions of high-modal overlap, randomly spaced resonances and that the energy is
distributed equally over the modes of vibration of a subsystem.

This paper splits in two parts employing the derivative of the SEA coupling matrix. The first is the
optimization of vibro-acoustic systems with respect to the energy flow for which an influence or a sensitivity
factor is proposed. The second is the estimation of the propagation of uncertainties of the system parameters
in the analysis.

1.1. Optimization

The application of statistical energy analysis in noise and vibration control is frequently reported in the
literature. In Ref. [1] Davis states that: ‘‘Noise control is based on identifying and then reducing energy flow
paths. This can be done by back tracing of energy from receiver to source or Craik’s coupling to total loss
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

C coupling matrix Eq. (3)
c elements of C
E energy
N number of modes
P path Eq. (1)
Si;kl sensitivity Eq. (8)

W transmitted power Eq. (2)
xu uncertain input variable
s variance Eq. (18)
ZDi damping loss factor
Zii total loss factor Zii ¼ ZDi þ

P
j Zij

Zij coupling loss factor
o angular frequency
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factor product ratio’’. Craik defines in Ref. [2] the path P along subsystems 1,2,3 to n as

P1�2�3�����n ¼
Yn�1
i¼1

Ziiþ1

Zii

, (1)

where Zij is the coupling loss factor (CLF) and Zii ¼ ZDi þ
P

j Zij is called total loss factor. The CLF Zij can be
defined by the power W ij transmitted from subsystem i to subsystem j

W ij ¼ EioZij . (2)

Because both methods have practical and theoretical problems, Davis concludes that: ‘‘More intelligent path
identification and assessment algorithms are needed.’’

This work takes up on this need and proposes an alternative approach. To establish a basis for an improved
vibro-acoustic design of a certain system the question can be posed: How much do changes of certain elements
influence the vibrational energy in a particular subsystem? To answer this question the energy EjðZklÞ in a
subsystem j is considered a function of the CLFs Zkl . By means of the derivatives qEj=qZkl , it is possible to get
an overview of which CLFs are most likely to change the vibrational energy in a given subsystem. This is
termed the sensitivity of a subsystem energy to the CLF. Analogous analyses can be undertaken for every
variable affecting the vibrational energy flow.
1.2. Propagation of uncertainties

Lyon [3,4] describes a method to assess the variance or confidence of results from a statistical energy
analysis. A population is considered of similar systems with slightly different dimensions and a standard
deviation is derived. The results support the conventional assumption that the confidence of the SEA
prediction increases with frequency. He concludes, however, that ‘‘There is a considerable area of interesting
research work that needs to be done in analysing variance of interacting systems.’’

A continuation of this work is done in a more recent study by Langley and Cotoni [5]. The study is based on
the Gaussian orthogonal ensemble, detailed in Weaver [6].

Culla et al. [7,8] broaden the range of uncertain variables to the system parameters (e.g. mass, stiffness and
dimensions). A numerical study is undertaken of the confidence factor by using a Monte Carlo simulation
technique for several general systems. It is found that the results do not exhibit the same tendency as those
predicted by Lyon. Accordingly, and in line with Lyon’s statement, the topic deserves a deeper and more
detailed investigation.

de Langhe [9], suggested a similar procedure which is employed in the context of the power injection method
and finds comparable results.

In this study also an analytical approach is proposed for the investigation of the problem of uncertain
system parameters and the propagation of the uncertainties in calculations of the subsystems energies. A
similar approach is employed in a standard [10] for the general assessment of the compound error of quantities
based on multiple, measured values with uncertainties. The analyses with partial derivatives show the impact
of a certain parameter uncertainty and can also be used to quantify the impact of the parameter itself.
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2. Theory

Consider a system composed of N subsystems with their energies Ei, the CLF Zij and the power inputs Pi.
The energy-flux in an SEA model of the system is given by [11]

o

ZD1 þ
PN

i¼2 Z1i � � � �ZN1

..

. . .
. ..

.

�Z1N � � � ZDN þ
PN�1

i¼1 ZNi

0
BBB@

1
CCCA

E1

..

.

EN

0
BB@

1
CCA ¼

P1

..

.

PN

0
BB@

1
CCA, (3)

where ZDi are the ordinary loss factors due to damping. In matrix notation, Eq. (3) reads

oC � E ¼ P, (4)

where C is the SEA or coupling matrix with elements cij. In the following P will be replaced by the energy
quantity GP ¼ P=o and Eq. (4) becomes

C � E ¼ GP. (5)

This means that the column vector of subsystem energies can be expressed as

E ¼ C�1 �GP. (6)

2.1. Sensitivity to CLFs

The first element of the Taylor series for the element of the energy Ej is given by

EjðZklÞ ¼ EjðẐklÞ þ
X

k

X
l4k

qEj

qZkl

����
Ẑ
ðZkl � ẐklÞ, (7)

which is a function of all Zkl at the expansion point Ẑ. The associated CLFs Zlk are related to Zkl via the
reciprocity relationship Zlknk ¼ Zklnl . The analysis therefore will be carried out only for l4k.

In principle, it is possible to analyse the oppositely directed CLFs separately. However, Craik [12] finds in a
analysis of random errors in CLFs that ignoring the reprocity relationship and assuming an independent Zlk

with the same error result in a greater deviation. The assumed physical effect is that the change of the CLF is
partly compensated by the dependent oppositely directed counterpart. Since the resulting error and the
sensitivity are highly interrelated as will be seen later, it is assumed that a separate analysis would overestimate
the effect of a change in a CLF. Instead, a sensitivity factor is sought that indicates where a change in a CLF
would have the largest repercussions. The sensitivity factor Sj;kl is the sensitivity of an energy Ej due to
changes of the CLF Zkl .

Especially to compare different sensitivity factors, it is assumed that a change of the CLF Zkl will be of the
order of the value Ẑkl at maximum. The value Ẑkl at maximum is taken because the Taylor series is expanded at
this point and the changes will be small relative to the expansion point. It follows that the sensitivity (factor) is
defined as

Sj;kl ¼
1

Ej

qEj

qZkl

����
Ẑ
Ẑkl . (8)

This is a reasonable estimate for the assessment of the influence of small variations in Zkl . The derivative
qEj=qZkl for an arbitrary SEA system will be calculated in Section 2.1.1.

Upon considering Eq. (7), the estimated effect of a change can be calculated, without solving the whole
system again i.e.,

DEj ¼ EjSj;kl

Ẑkl � Zkl

Zkl

. (9)
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Greater changes of the CLFs and a more accurate effect estimation can be achieved by including more terms
of the Taylor series (7), but herein a first-order indication of the influence is taken to be sufficient.

2.1.1. Partial derivative of an inverse matrix with respect to its components

The partial derivatives of the energy Ej with respect to the CLF or any uncertain input quantity xu of
subsystem u (uaj) is obtained from the derivatives of the energy in the jth subsystem with respect to its
elements ckl that are functions of xu (usually cuk; cuu; ckk and cku). By using the chain rule for functions of
several variables

qEj

qxu

¼
XN

l¼1

XN

k¼1

qEj

qckl

qckl

qxu

. (10)

Since the energy Ej can be expressed as the product of the inverse coupling matrix and the energy GP,
E ¼ C�1 �GP, the partial derivatives of the inverse coupling matrix C�1 with respect to its—non inverted—
elements ckl will be examined. It should be noted that the partial derivative with respect to ckl is not equal to
that with respect to Zlk. Here an intermediate step is employed which makes it much easier to form the partial
derivative qðC�1 �GPÞj=qZkl or that with respect to any other variable xu, with ZklðxuÞ.

At first a slightly modified variant of the common sub-matrix, that is used to build the inverse, is defined.
This simplifies the calculation of the derivative. To build the sub-matrix Mmn the ðm; nÞ element of the matrix M

is set to unity and the rest of the elements in the m-row or the n-column to zero. For details of the procedure
and a proof that the sub-matrix is a result of the differentiation see Appendix A.

By employing the results given in the appendix, the partial derivatives qEj=qckl can be formed as

E ¼ C�1GP,

Ej ¼
XN

i

1

detC
detCijGPi

,

qEj

qckl

¼
XN

i¼1

detCijkl
GPi

detC
�

detCkl

detC2
detCijGPi

. (11)

Moreover, the partial derivative of an energy with respect to ckl , normalized with respect to the energy, is
given by

1

Ej

qEj

qckl

¼
XN

i¼1

detC

detCijGPi

XN

i

detCijkl
GPi

detC
�

detCkl

detC2
detCijGPi

� �
. (12)

Provided that GPi
a0 this reduces to

1

Ej

qEj

qckl

¼

PN
i detCijkl

GPiPN
i detCijGPi

�
detCkl

detC
. (13)

If GPi
¼ 0, the ith element of the sum

PN
i¼1 is zero.

To obtain the sensitivity for Zkl , the partial derivative qcij=qZkl is required,

qcij

qZkl

¼

�DNl=DNk for i ¼ k and j ¼ l;

1 for i ¼ j and i ¼ k;

�1 for i ¼ l and j ¼ k;

DNl=DNk for i ¼ j and i ¼ l;

0 otherwise:

8>>>>>><
>>>>>>:

(14)
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The resulting expression for the sensitivity to a CLF Zkl thus can be developed from Eq. (8) to be given by

Sj;kl ¼ �
DNl

DNk

PN
i detCijkl

GPiPN
i detCijGPi

�
detCkl

detC
þ

PN
i detCijkk

GPiPN
i detCijGPi

�
detCkk

detC

 

�

PN
i detCijlk

GPiPN
i detCijGPi

�
detClk

detC
þ

DNl

DNk

PN
i detCijll

GPiPN
i detCijGPi

�
detCll

detC

!
Zkl . ð15Þ

2.1.2. Computational effort

In the case of many subsystems the computational effort is of great importance for the practicability of a
method. In this section the order of magnitude of operations as a function of the number of subsystems N is
compared with that of the path-by-path method. The maximum number of independent CLFs is 0:5ðN � 1Þ2.
For each CLF a series of determinants need be computed, each of which with a maximum effort of the
order of OðN3Þ, assuming a Gaussian elimination. The resulting effort to compute the sensitivity factors, is
therefore of the order of OðN5Þ. It will take about N2 the time of solving the SEA matrix itself. With this step
performed however the effects of changes in the system can be estimated without solving the whole system
again.

Usually the path-by-path analysis is done by selecting the dominating paths based on experience or intuition
and comparing them. A reason is the computational effort of a complete analysis. In general, the maximum
number p of paths of length n in an N subsystem model is p ¼ ðN � 2Þn�2 [2]. In a real model, most of the
CLFs will be zero, which reduces this number. By assuming that the longest path of interest is of the length N

and the shortest has the length of one, it follows that

ptot ¼
XN�2
i¼0

ðN � 2Þi ¼
ðN � 2ÞN�1 � 1

N � 3
. (16)

For each path, a product of a maximum of N factors need be calculated, according to Eq. (1), such that the
overall effort is of the order OðNN�1Þ.

2.1.3. Path analysis and sensitivity factors

A simple example is presented to illustrate the relation between the path analysis and sensitivity factors.
Consider a system consisting of two subsystems where only subsystem 1 is fed by the power P1. It follows that
the vibrational energy E2 in subsystem 2 is E2 ¼ ðZ12=Z22ÞE1. The path P1�2 ¼ Z12=Z22. The sensitivity factor is

S2;12 ¼
E1

E2

Z12
Z22
þ

Z12Z21
Z222

� �
. (17)

Upon assuming Zij � Zii, Z12Z21=Z
2
22 can be neglected in comparison with Z12=Z22 and it follows that

P1�2 � ðE2=E1ÞS2;12. Provided the condition Zij � Zii is valid for all subsystems this can be generalized for
longer paths following the idea of Craik’s path analysis as, for example, P1�2�3 � E3=E1 S3;12S3;23.

2.2. Propagation of uncertainties

The CLFs, which have to be input by the analyst, are functions of the geometry and material properties.
Henceforth, the input quantities will be denoted xi. The uncertainties of the input quantities lead to
uncertainties of the resulting energies characterized by a variance. A possibility to assess the resulting variance
is to develop the functional relationship EðxiÞ and to determine the partial derivatives, as given by expression
(18). The variance s2f of a function f that is depending on a large number of independent variables xi is given
approximately by Gauss’ error propagation law. This means that for a limited number M of variables, the
variance is approximated by

s2f ¼
XM
i¼1

qf ðxÞ

qxi

� �2

s2xi
, (18)
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where s2xi
is the variance of the input quantity xi. The latter variance can be based on an estimation or assessed

from repeated ðniÞ measurements of the variable xi i.e., assessed from

s2xi
¼

Pni

l¼1 ðxil � xiÞ
2

niðni � 1Þ
. (19)

This would mean that a functional relationship would have to be developed for each SEA subsystem and each
uncertain parameter. This effort can be circumvented by rewriting the derivatives, which gives the energy
variance s2E caused by the uncertainty of an input quantity xu such that

s2Ej
¼

XN

k¼1

XN

l¼1

qEj

qckl

qckl

qxu

 !2

s2xu
. (20)

Hence, the normalized standard deviation due to all uncertain input quantities xu is given by

sEj

Ej

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

u¼1

XN

l¼1

XN

k¼1

1

Ej

qEj

qckl

qckl

qxu

 !2

s2xu

vuut . (21)

Finally, the expression for the normalized standard deviation is found by inserting Eq. (13) in Eq. (21),

sEj

Ej

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

u¼1

XN

l¼1

XN

k¼1

PN
i detCijkl

GPiPN
i detCijGPi

�
detCkl

detC

 !
qckl

qxu

 !2

s2xu

vuut . (22)

Note that the uncertain parameter xu represents a CLF or any other quantity. The term qckl=qZklðxuÞ will
usually be non-zero only for the four occurrences fðk; lÞ; ðk; kÞ; ðl; kÞ; ðl; lÞg of Zkl in the coupling matrix C.
3. Examples: sensitivity analysis

Consider a system composed of two subsystems where subsystem 1 is fed by the energy GP1
and subsystem 2

is only indirectly excited i.e., GP2
¼ 0. The CLFs are related by

Z12 ¼ DN2=DN1Z21. (23)

For N ¼ 2 and GP2
¼ 0, Eq. (13) gives

1

E2

qE2

qckl

¼
detC12kl

detC12

�
detCkl

detC
¼

1

detC

�c22 c21

c12 þ detC=c21 �c11

 !
. (24)

Upon expressing the SEA matrix elements in terms of the associated CLFs Z, using Eq. (3) and applying
Eq. (15) the sensitivity factor

S2;12 ¼
gZ12 þ Z21 � ðZD2 þ Z21Þ � gðZD1 þ Z12Þ
ðZD1 þ Z12ÞðZD2 þ Z21Þ � Z12Z21

þ
1

Z12

� �����
Ẑ
^Z12

¼ 1�
ZD2Z12 þ ZD1Z21

ZD1ZD2 þ ZD2Z12 þ ZD1Z21
ð25Þ

follows, while g ¼ DN2=DN1.
The above procedure is readily corroborated since the same result is produced if the directly derived

functional relationship

E2 ¼
GP1

Z12
ZD1ZD2 þ ZD2Z12 þ ZD1Z21

(26)

is used and the partial derivate qE2=qZ12 is calculated.
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3.1. Generic four subsystem model

In general the CLFs depend on frequency such that predictions of the sensitivity factor must be made for the
frequency range of interest. For clarity the analyses herein are carried out just for one frequency. They can
easily be extended, however, to frequency spectra.

Consider the four subsystem SEA model depicted in Fig. 1. The subsystems are assumed to have the same
number of modes and damping loss factor, but the CLFs differ between the systems as indicated in the figure.
To enable comparisons, the dissipation loss factors and CLFs are equal to those used by Craik [2]. The
analysis is independent of the values of the parameters. The engineering task is to minimize the vibrational
energy transmission from the source (subsystem 1) to the receiver (subsystem 4). By applying Craik’s path-by-
path analysis for the relevant paths one finds that

P1�2�4 ¼ 0:16; P1�2�3�4 ¼ 1:43� 10�4,

P1�3�4 ¼ 4:4� 10�5; P1�3�2�4 ¼ 1:43� 10�4. (27)

The parameter Pi�j is the amount of energy transmitted along the path i � j. Upon calculating the sensitivity
factors the following values are obtained:

S4;12 ¼ 0:38; S4;13 ¼ �4:5� 10�3

S4;23 ¼ �3:7� 10�2; S4;24 ¼ 0:38;

S4;34 ¼ �4:5� 10�3:

(28)

A large value of Sj;mn means that Zmn has a large influence on the energy in subsystem j. Moreover, the energy in
subsystem 4 is estimated to be E4 ¼ 1:4� 10�3. To minimize the energy in subsystem 4 one possibility is to
strengthen the coupling between subsystems 2 and 3. The negative value of S4;23 indicates that an enhancement
will reduce the energy transmitted to subsystem 4. Upon assuming that the CLF factor between subsystems 2
and 3 can be easily increased to a value of Ẑ23 ¼ 10�3, this option should be investigated. By calculating the
estimated effect from Eq. (9), the result is DE4 ¼ �5:1� 10�3, which of course is unphysical. Not surprisingly
this estimation fails, since a change of the initial CLFs with a factor of 100 is not small. A recalculation of the
whole system results in

P1�2�4 ¼ 0:038; P1�2�3�4 ¼ 3:4� 10�4,

P1�3�4 ¼ 4:5� 10�6 P1�3�2�4 ¼ 3:4� 10�4. (29)

This shows that the effect is that more energy is transmitted over the long lossy paths 1–2–3–4 and 1-3-2-4 and
the energy in subsystem 4 is reduced to E4 ¼ 1:0� 10�3. The new sensitivity factors are

S4;12 ¼ 0:4; S4;13 ¼ 3:5� 10�3;

S4;23 ¼ �2:7� 10�2; S4;24 ¼ 0:4;

S4;34 ¼ 3:5� 10�3:

(30)
1

2

3

4

1e-4

1e-6

1e
-5

1e-4

1e-6

Pin

Fig. 1. A four subsystem SEA model with the coupling loss factors indicated.
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Fig. 2. Set-up of the SEA system.
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showing that all sensitivities but S4;23;S4;12 and S4;24 are reduced numerically and that S4;13 and S4;34 have
changed sign.

In the next step the CLF between subsystem 1 and 2 is halved to Ẑ12 ¼ 5� 10�5. The estimated effect from
Eq. (9) is DE4 ¼ �2� 10�4. Recalculating the whole system results in E4 ¼ 7:16� 10�4, which is just slightly
less than the assessment E4 ¼ Ê4 þ DE4 ¼ 8� 10�4. The new paths are

P1�2�4 ¼ 0:02; P1�2�3�4 ¼ 1:8� 10�4,

P1�3�4 ¼ 4:5� 10�6 P1�3�2�4 ¼ 3:6� 10�4. (31)

From the new sensitivity values, the interesting observation can be made that the best strategy is a further
reduction of Z12.

S4;12 ¼ 0:57; S4;13 ¼ 1:0� 10�2;

S4;23 ¼ �2:8� 10�2; S4;24 ¼ 0:4;

S4;34 ¼ 3:5� 10�3:

(32)

Without doubt, the path-by-path analysis is very useful for understanding the flow of energy in a system. The
advantage of the sensitivity factors is that they provide a more detailed view. Moreover, the approach offers
the possibility to weigh the sensitivity factors with some cost aspect (financial, mass, etc.) and achieving a
rational basis for a redesign (Fig. 2).

4. Examples: propagation of uncertainties

To examine the variance due to, for example, an uncertain coupling length between two subsystems, the
example in Section 3 is adapted.

Two plates that are edge coupled over the length l constitute the subsystems 1 and 2. The resulting variance
of the energy in subsystem 2 is studied when the coupling length has an uncertainty Dl. The CLFs are [13]

Z12 ¼ DN2=DN1Z21 ¼ t12
cg1

o
l

pS1
. (33)

With Eq. (33) p; q ¼ 1; 2

qcpq

ql
¼
� 1

l
Zpq; paq;

1
l

P
iap Zpi; p ¼ q:

(
(34)

In view of Eq. (22), this leads to the normalized standard deviation

sEj

Ej

¼ 1�
ZD2Z12 þ ZD1Z21

ZD1ZD2 þ ZD2Z12 þ ZD1Z21

� �
Dl

l

����
����. (35)

The result is analogous to that in Section 3 and expresses the implication of the uncertain variable xu on the
subsystem energy. It should be noted that xu can be any variable provided that the relationship qcij=qxu is
known.
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4.1. Cascaded subsystems

With the derivation corroborated, a Matlab script was written to examine a generic configuration. A third
subsystem is introduced with a second uncertain input quantity; the thickness ratio f between plates 2 and 3.
The system is sketched in figure

t23 ¼
f�5=4 þ f�3=4 þ f3=4

þ f5=4

0:5f�2 þ f�1=2 þ 1þ f1=2
þ 0:5f2

 !2

. (36)

With the partial derivate qt23=qf and the implementation of the variance calculation given by Eq. (22), a
numerical example is calculated. Fig. 3 shows the energy in the third subsystem with the standard deviation.
The dashed lines show the impact of the uncertainty of the thickness ratio f only and the grey area shows the
total uncertainty due to the uncertainties in coupling length and cross-sectional thicknesses. Both normalized
10-5

10-6

10-7

10-8

10-9

15 20 25 30 35 40 45

E
3

k Δl

Fig. 3. Energy in subsystem 3 with standard deviation.

σ E
/E

15 20 25 30 35 40 45

k Δl

0.5

0.45

0.4

0.35

Fig. 4. Normalized standard deviation in subsystem energy due to uncertainties in coupling length (solid) and thickness ratio (dashed),

both indicated normalized standard deviations 0:1.
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uncertainties are 10%. The frequency dependent variance is plotted in Fig. 4. It shows that the impact of the
thickness ratio uncertainty is roughly 2/3 of that of the coupling length. The variance is slightly increasing with
frequency, an effect that is stated also by Culla in Ref. [8], while model uncertainties usually decrease with
frequency. An investigation of uncertainties in the input parameters, however, can result in different
tendencies. The analysis of the variance reveals the influence of system parameters.

5. Concluding remarks

An algorithm to calculate a factor expressing the sensitivity of a subsystems energy to CLFs is presented.
Based on this algorithm a method is devised for the analysis of the significance of the various paths for the
energy flow in a system. The flexibility of the method and the detailed insight gained into the influence of
parameters of the system can be very helpful in design. Though demonstrated viable in a few examples, a
practical application for real systems is required to verify the usefulness of the method.

Furthermore, it is shown that the uncertainty in an SEA prediction, resulting from uncertainties in input
data or system parameters, can be assessed analytically. The prerequisite is that a functional relationship must
be available between the CLF and the uncertain quantities. Although the uncertainties herein are assumed to
have a Gaussian distribution this is no limitation. Provided the uncertainty variance can be properly assessed,
the estimation of the uncertainty propagation will remain valid also for other distributions.

Appendix A

To calculate the derivative of the a inverse matrix, it is necessary to establish a variant definition of the sub-
determinant. The sub-matrix Mm;n is usually constructed by deleting the ðm; nÞ row and column. The sub-
determinant is calculated as the determinant of this sub-matrix with the leading sign given by ð�1Þmþn. This is
the formal way to calculate the inverse matrix M�1 ¼ m�1mn ¼Mnm= detM. The subsub-matrix Mmnij

is
developed by setting the ðm; nÞ element to unity and the rest of the elements in the m-row and the j-row to zero.
The leading sign follows that of the determinant. In such a way, is established the subsub-matrix Mmnij

Mlmij ¼

m11 � � � mm1 ¼ 0 � � � mNj ¼ 0 � � � mN1

..

. ..
. ..

. ..
.

m1n mmn ¼ 1 0 mNn

m1j 0 mij ¼ 1 mNj

..

. ..
. ..

. ..
.

m1N � � � mmN ¼ 0 � � � miN ¼ 0 � � � mNN

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
, (A.1)

just by repeating the procedure. Only for ðm ¼ i; n ¼ jÞ , also the ði; jÞ element is zero and so detMijij
¼ 0. To

show that the sub-matrix definition is useful for the calculation of the derivative of the determinant, a step-by-
step procedure follows for the development of the derivative of the determinant of an arbitrary matrix.
Required for the procedure is a permutation symbol � given by

�k1;...;kn ¼

1 for even permutations of 1; . . . ; n;

�1 for uneven permutations of 1; . . . ; n;

0 otherwise:

8><
>: (A.2)

Accordingly, the derivative of the determinant with respect to its elements is obtained as

q detM
qmij

¼
q

qmij

�k1;...;kn m1k1
; . . . ;mnkn

¼ �k1;...;kn
q

qmij

m1k1
; . . . ;mnkn

¼ �k1;...;kn m1k1
; . . . ;mi�1ki�1

; djki
;miþ1kiþ1

; . . . ;mnkn

¼ detMij. ðA:3Þ
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When calculating the derivative of the sub-determinant detMlm the definition above is used by inserting the
Kronecker-d at the n-row

q detMmn

qmij

¼ �k1;...;kn
q

qmij

m1k1
; . . . ;mm�1km�1 ; dnkm ;mmþ1kmþ1 ; . . . ;mnkn

¼
mai

�k1;...;kn m1k1
; . . . ;mi�1ki�1

; djki
;miþ1kiþ1

; . . . ;mm�1km�1 ; dnkm ;mmþ1kmþ1 ; . . . ;mnkn

¼ detMmnij
. ðA:4Þ

If m ¼ i then q detMmn=qmij equals zero and if n ¼ j, it follows that q detMmn=qmij is zero because the
derivative qdjki

=qmij ¼ 0.
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